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ABSTRACT

The real and imaginary componentsof the indices of refractionP

the il uptt i m nt, of silver, a silver-indium alloy, gold, gold-

aluminum alloys, and aluminum have been studied in the wavelength

range of 304 to 1671 A.

Electrical conductivity as derived from the optical constants is

shown to be related to interband transitions in these metals. A -fdel
lh ,ee-erorstrctedwhichp e mi s ~~re ~4 ~ h .

k .trn.t -..ii.on.ard the energy , d- -m-,.& ~ <.t e ea~ .

Analysis of results for silver indium alloys indicate a breakdown

of the rigid band concept., A Fermi surface which has less contact at

the Brillouin zone faces and a less distorted shape is indicated for the

alloy. The modified- energy band structure is presented and discussed.

The relation between the energy gap at Brillouin zone faces and

the interband transition probability is developed and data are presented

which demonstrate its relative importance.

C
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CHAPTER I

INTRODUCTION

In the region of visible radiation most metals can be described

optically as having high reflectivity and low transmissivity. These

properties can be defined in a more quantitative manner with the in-

troduction of two quantities: the index of refraction, n, and the ex-

tinction coefficient, k. The index, n, is usually defined as the ratio

of the velocity of light in vacuo to the velocity of propagation in the

medium under consideration, while the coefficient k is related to the

rate of absorption of energy from the incident beam of radiation.

In most non-conductors k is essentially zero, but in metals it

is usually the dominant factor of reflectivity and may assume values

much greater than n. These optical constants have attracted consider-

able attention from the time of the formulation of Maxwell's equations.

Indeed, the latter can be written to include these constants in a com-

plex index of refraction defined as N = n - ik. It should be noted that

the appellation "optical constant" is somewhat a misnomer because

both n and k are distinctly functions of the frequency of radiation.

When Maxwell's equations are written in terms of the complex

index, an expression for the electric field Inside the metal is obtained

which includes an exponential attenuation factor:

kw- ,n-ec-- r -0 - wr r* % w
(1) E(r) r) e e e

where 0 is a unit vector in the direction of propagation. Since the in-

tensity of the electromagnetic wave goes as the square of the electric

vector, the decay of intensity with distance is given by the exponent



2

4 7Tk/X where X is the free space wavelength. This exponent is often

referred to as the absorption coefficient.

Further manipulation of Maxwell's equations produces expres-

sions for conductivity and dielectric constant in terms of the optical

constants:
2 k2

(2) or = nkv , and K = n -k

A determination of these constants therefore permits an evaluation of

two important electrical quantities. However, conductivity and di-

electric constant were also derived by Drude, Zener and KronigI starting

with the -equation of motion for a free electron in an oscillating electric

field. This strictly classical approach was found to give satisfactory

results at wavelengths in the far infrared, but the theoretical pre-

dictions do not agree with experimental results in the region of visible

and shorter wavelengths. At these frequencies, n and k are usually

determined by means of absorption or reflection measurements and are

then used to evaluate conductivity and dielectric constant by means of

Equation (2).

In the far ultraviolet it is not unusual to find conductivities

which exceed the Drude value by factors of several hundred, and we

must resort to some other approach for an explanation of the observed

phenomena.

The advent of quantum theory and the introduction soon there-

after of concepts such as energy bands in solids provided the foun-

dation for radically new approaches to many physical problems,

including that of the optical properties at short wavelengths. The work

of Bloch, especially, supplied the basis for a quantum formulation of

optical phenomena in solids. Chapter III presents a development of

this formulation and suggests means of applyingit to quantities such

as conductivity.

1 F. Seitz, Modern Theory of Solids, McGraw-Hill Book Co. ,
New York, 1940.
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Although the quantum mechanical approach to this problem

appears basically sound, its practical application has been hampered

by the difficulties attendant to writing the wave function for the system

of electrons in a metal. It is only in recent years that credible wave

functions and energy level schemes have been devised for other than

the simplest metals. The results discussed in Chapter IV are based on

theoretical band structures which were calculated in the last two years. 0

The investigations presented here are those of the optical

properties of several metals and their alloys and the relationship of

these properties to the energy band structure of the metals. Included

are measurements of n and k in the wavelength range where interband

transitions occur and the calculation of conductivity from these con-

stants. A model is introduced which permits the computation of con-

ductivity from quantum mechanical principles and a comparison of the

two results is used to analyze the band structure of the metals.



CHAPTER II

THEORY - CLASSICAL

A. Maxwell's Equations and Optical Constants

Consider a plane, electromagnetic wave traveling in the positive

Xdirection, with E = E I, and H = H ., and assume a time depend-
-Y -iwt z

ence for E such that E = E(x) e Then the general wave equation
1

can be written in MKS units as

02 .. 2 -"

2 -(EwU) + iwji.r)E = -K E, where,
ax

SKE ,K = the dielectric constant0

A Kpmo , K = relative permeability

K=al - If •

As a solution to Equation (1) we have

-i(Kx - wt) - ix (x -W t)
(2) E = e = E e e0 0

The last equation can be written in terms of a complex index of re-

fraction, N, by using the following relations

K=) N=- Nc X

= free space wavelength
0

K = (n - ik) = complex index of refraction

k = extinction coefficient

W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, Addison-Wesley Publishing Co., Reading, Mass.,
Chapter 11.
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Then, in terms of a complex index, the electric and magnetic fields

are

N- -N iW(t- x) i (t- H X)
(3) E = E 0, H = H e

0 0

Recalling Maxwell's equations in the form

(4) VXH = orE + KC E

atVx = -K m4 a°

we can substitute for E and H in (4) from (3) and obtain

(5) -i - H = (Or - iWKE , and iw i- E = iWKm .

If K is set equal to unity, as is possible for many media, and the twom

equations in (5) are combined, the following relation results

(6) U- iWKE =2wE nk- iLE (n2 - k2)

Upon equating real and imaginary parts we obtain expressions for the

conductivity and the dielectric constant of the medium:

2 k2
(7) u=2nkE w K = n -k

In cgs units these quantities are given as

2 k2

(8) a = nkv K = n -k

Thus, the real and imaginary parts of the index of refraction are basic

to both conductivity and dielecttic constant.

Further application of Maxwell's equations with appropriate

boundary conditions leads to the generalized Fresnel equations. For
2

homogeneous, isotropic, semi-infinite media, these can be written as

Ell
S _ n cosO - cosd = sin(p- 0)

E n cos + cos sin(P+ 0)

2 Panofsky and Phillips, op. cit., p, 178.

Ii
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El n cosO- cosO tan(d- 0)
(10) - ncos4+ cosO tan(O+ 0)

P

where

s = that component of E perpendicular to plane of incidence

p = that component of E parallel to plane of incidence

= angle of incidence

0 = angle of refraction

Unprimed terms denote the incident electric field components and

primed terms denote the reflected field components. Noting that the

intensities of the reflected and refracted beams are proportional to the

square of the wave amplitudes, the Fresnel equations can be used to

obtain reflectivity in terms of the angle of incidence and the two com-

ponents of the index of refraction, namely

(1) R (a - cosch) 
2 + b2

(a + cos )2 + b2

a 2 + b 2  2a sin tan6 + sin 2tan 2
R = R 4 m
p s a + b2 + 2a sino tano + sin 24" tan 2"P

where

R s= reflectivity of that component of E perpendicular to thes

plane of incidence

R = reflectivity of that component of E parallel to the plane ofP
incidence

1 2 2 2 2 221/2 1 2 2 2 1/2a = [ (n - sin24 +4nk 2 ] +: [n 2 - - sin2@]

1 2 k2 2 2 21/2 1 [2 _ 2 sl21 I/2

b = -[ (n _ k - sin 2) + 4nk ]  - [n _ k _ sin

At normal incidence sinP = 0 and we have
(n-l1)2 + k

(12) R = R - 1 k 2

s p (n + )2 +k

With these relations, therefore, one can obtain n and k for a medium if
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reflectivity measurements are performed at least at two different angles

of incidence.

Inasmuch as algebraic solutions of these equations for n and k

is not possible, various graphical and geometrical solutions have been
3 4

proposed. In this work, the method of Tousey , as extended by Cole

was used to obtain n and k, given Rand . Graphs of R versus n for

constant k and 0 were used to obtain pairs of values in an n-k plane.

Plots of these values of n and k for two or more angles of incidence re-

veal a unique pair of n and k which satisfy the Fresnel equations.

For these results to be valid, the degree of polarization must be

taken into consideration. We defined the degree of polarization of the

incident beam as

I -I
(13) P I p I

p s

and adopted a trial and error method in the solution of Equation 11 using

various values of P. Experimentally, R was measured at four values of

, (70' , 500 , 300 , and 100), and n-k pairs were obtained for various

choices of P. It was found that a most constant multiple intersection

of the n-k curves resulted with a unique value of P. This value of P was

then used to define the optical constants. Figure 1 shows two n-k graphs

for gold at 1671A and demonstrates the effect of varying the value of P.

Since the intersections of these four curves were influenced by errors of

experiment and graphical interpolation, an average value was taken for

the point of intersection with the most probable P.

Reflectivity as a quantity does not uniquely characterize a

particular medium as to its conductivity, nor can the converse notion be

3 R. J. Tousey, J. Opt. Soc. Am. 29, 235, (1939).

4 T. T. Cole, Thesis University of Colorado, 1961.
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accepted. The quantities n and k appear to be more fundamental in this

respect. Let us consider the expressions derived for conductivity and

for reflectivity at normal incidence, equations (8) and (12). Using

these relations, one can calculate R as a function of k for fixed n, and

then construct a family of curves, each for a different value of n as in

Figure 2. From this construct one can devise curves of iso-reflectivity

for various combinations of n and k as in Figure 3. The two dashed

curves represent lines of constant nk product, or lines of constant

conductivity. In Figure 3 we can compare two media, A and B, which

have different conductivities. In the example chosen, A has a lower

conductivity than B but higher reflectivity, in contrast to the intuitive

feeling that increased conductivity should lead to higher reflectivity.

The same results can also be obtained for reflectivity at other than

normal incidence.

B. Drude, Zener, Kronig Free Electron Gas

In this concept, the conduction electrons in a metal are assumed

to be perfectly free and to move in a random manner. Their velocity

distribution is governed by the laws of classical statistical mechanics,

and they undergo collisions caused by thermal effects or structural

imperfections in the lattice. In the absence of any external forces their

average velocity is
N

(14) va = N v

At equilibrium, va will be zero since there will be just as many electrons

moving in one direction as in the opposite direction.

Because of the collisions which occur one must introduce a re-

laxation time into the equations of motion of the electrons. This relax-

ation time, T , will be closely related to the average time of flight

between collisions and appears as a damping term in the equations.

The equation of motion for a free electron in the presence of an

electric field is
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12

2
(15) dx m dx.(1) m-+- -- eE

dt 2  T dt x
ihot

A solution to (14) for a field which varies as e is

eE
x(16) x=2

m(4 r2V 2 - 21ri V/r)

Now, the current density, ix' is given by

dx(17) Jx = Ne dt = Ex

where

N = number of free electrons per unit volume.

Substituting in the last equation for X, and solving for the real part of a,

we get
N2 1

(18) 
Ne 2
MT (47r 2 2+ 1

For the case of a static field, v = 0, and the expression for a reduces

to 2

(19) m

Experimental measurements of conductivity of the noble metals indicate
-13

a relaxation time of about 10 seconds.

The Drude theory has been tested by Hagen and Rubens 4 in the

far infrared where v << - , and in this region there is good agreement
T *

between calculated and measured values. In the visible and ultraviolet

however, the theory does not agree with experimental results. In this
1

region, vwi , and the expression for ar reduces to
Ne2

( 2 0 ) o " 2 2

4E. Hagen and H. Rubens, Ann. Physik, 14, 936, (1904).
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Curves of conductivity vs. wavelength in the far ultraviolet,

(obtained from n, k measurements), show characteristic humps and

valleys with values of conductivity often far exceeding those pre-

dicted by the Drude theory. Such discrepancies are to be expected

inasmuch as the simple theory does not consider possible transitions

between quantum mechanical states. The quantum formulation will be

developed in later sections and applied to the problem of optical

properties and conductivity.



CHAPTER III

QUANTUM MECHANICAL TREATMENT
OF OPTIbAL PROPERTIES

A. Free Electron Model

The Schroedinger equation for an electron in free space is2

(1) 2 1 2 E

and has the normalized solution

(2) 1 ikr

V1/

where 2 2mE
k = 2

and should not be confused with the extinction coefficient derived in

Chapter II.

Application of boundary conditions leads to discrete values for the

wave vector k. If we consider the electron to be confined within a cube

of edge L and require that

(3) *i (x,y,z) = * (x + L,y,z)

then the allowed values of k are
21T 2i"2r

(4) kx  = 1 nx  , ky = -n , k = -n2 ,
L L y z L- "z

where n, ny, and nz are integers.

The Pauli exclusion principle allows only two electrons in each

of the three components of k, one electron with spin + 2 and one with

1 L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Co.,

New York, 1955.

2C. Kittel, Introduction to Solid State Physics, John Wiley and

Sons, Inc., New York.



spin - If N electrons per unit volume are to be confined in the cube

and the system is to be at equilibrium, states in k-space will be filled

in such a manner that the energy of the system is at a minimum. Under

these conditions the filled states will form a sphere in k-space with a

radius given by

(5)2 1/3(5) kf = (3ir2N)!

Correspondingly, electrons will occupy all energy levels up to

2f (3T2 N)2/3

f~k 2 m 2(6) Ef - 2m - 2m (~N

at a temperature of absolute zero. Ef is known as the Fermi level and

its order of magnitude is 5 ev. for many metals.

The density of states, i. e. , the number of states per unit energy

range per unit volume, is easily found. Letting g(E) be the density of

states, we have

12 3/2
(7) j g(E)dE = N -3lT_ (2mE/li)3 2

1 23/2 1/2
(8) g(E) - 1 (2m/,h2) E

21 T

Thus, for a temperature of absolute zero, the density of states rises

parabolically until the Fermi level is reached, then drops sharply to

zero. Higher temperatures lead to a slight rounding off of the dis-

continuity at the Fermi level. This rounding off occurs over an energy

region of approximately kT, (kT- 0. 026 ev. at room temperature), and

therefore only a small fraction of the average Fermi level.

The Fermi surface is a boundary in k-space which separates the

occupied states from the unoccupied ones. For perfectly free electrons

the surface is spherical, but this is an idealized case which exists
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only when a potential energy term is absent from the Schroedinger

equation.

The wave function given in (2) is applicable to one electron

only. For the system of N electrons one can approximate the total

wave function by use of the one-electron approach. In this scheme a

wave function for an N electron system is constructed from N one-

electron functions and the Hamiltonian for the system includes the

energy of coulomb interaction between electrons. The operator for this

energy takes the form

()1 1' e2
(9) --Lre

i,j2 r

and the prime on the summation indicates omission of terms i = J.

The N-electron wave function must be antisymmetric 3 and can be

written as

(10) *l, (1,2,---N) = (-I)p P [ 0 ()p (2) -- -(N) ]

p

where the permutation operator covers the range of the N 1 permutations

and p is the parity of the p-th permutation. The 0, include a space

function, 4r, (r) , and a spin function, * (s). This sum can also be

written in a form known as the Slater determinant:

Oct( 1) a (2 ) ... ba (N)4

0 (l) 0 0(2) -- -- (N)

3L, I. Schiff, op. cit. , p. 224.
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This determinant has the interesting property that it vanishes identically

if two or more electrons are in the same state and it therefore auto-

matically includes the requirements of the Pauli exclusion principle.

Although (10) is composed of-one-electron functions, its anti-

symmetric character precludes independent motion of the electrons. The

motion of each is correlated to the motion of the others and this is the

result of the Pauli principle rather than electrostatic effects.

The total kinetic energy operator is now

(12) 
22m i

Its operation on the function (10) yields a simple sum of energies of the

one electron functions

12 N 2 N
(13) - 2m f i 1 *idT = Ei

i=l 1=1

The average kinetic energy is therefore unaffected by the symmetry of

the total wave function since the same result would be obtained if 'I'

were taken to be a simple product of one electron functions.

The average value of the coulomb interaction term is affected by

the symmetry of the wave function. Letting (9) operate on (10) leads to

a summation of two sets of terms

2- 2 -2
(14)L- (r 1 ,(r 2)1 drl2

ir12

r 12 d12

The first set of terms gives the usual coulomb energy; the second set

gives the exchange energy which is a direct result of the use of an anti-

symmetric wave function. Whether the exchange energy will be positive
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or negative depends on the form of the 0,; no general prediction can be

made.

B. Band Theory and Brillouin Zones

In the previous section we were concerned with perfectly free

electrons, i.e. , those described by a Hamiltonian which contained only

kinetic energy and electron-electron interaction energy terms. Let us

now introduce a potential energy as viewed by an electron in a perfect,

semi-infinite crystal. This potential will be periodic with a period of

the lattice such that

(15) V ( ) = v (r, + R )

where R is a primitive translation vector of the lattice. Because the

potential is periodic, the Hamiltonian operator will also be periodic

with

A---
(16) H) = (+ -R)

A
Now we introduce a symmetry operator T (r), which translates the crystal

- J.
through the vector R in the manner

A --

(17) T r = r +R

A
The elements T belong to the translational group of the crystal and by

virtue of the above, they commute with the Hamiltonian. Then, any non-
A A

degenerate energy eigenfunction of H is also an eigenfunction of T. If
A

T is an eigenvalue of T, the eigenvalue equation can be written as
0

(18) T*(r) = o () /(r + R)

Application of the translation operator a second time leads to

(19) 2
(1r) = TT * (r) = T (r) = 4(r + 2R)

0 0
A

Repeated application of T N times gives the result
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(20) TN (r) = (r+ NR)
0

Now, the periodic boundary conditions imposed earlier required that

(21) (r) = (r + NR)

and therefore

N
(22) T N 1

o

or

1N 21ill

(23) T = 1
. /N = e N- = - ... , N-i

The eigenfunctions of T must change only by the complex phase factor

when r goes to (r + R) and must be of the form

- ik.r

(24) vj (r) = uc (r) e

with u-(r) possessing the periodicity of the lattice.

Although Bloch was the first person to apply (24) to an electron

in a crystal, and this function is known as a Bloch wave, the purely
mathematical result had long been known to mathematicians as Floquet's

theorem. Details of the theorem may be found in moderately recent

literature.

It is interesting to ask what the allowed energy spectrum looks

like now that a periodic potential has been included in the Hamiltonian.

An often quoted example 5 is the Kronig-Penney one dimensional model.

The periodic potential of Figure 4 is postulated with heights V and0

widths b, and regions of zero potential of width a. In the latter regions

the general solution to the Schroedinger equation is

4 E. T. Whittaker and G. N. Watson, Modern Analysis, American
Ed., p. 412, Cambridge U.P., NewYork, 1943.

5 F. Seitz, The Modern Theory of Solids, p. 281, McGraw-Hill

Book Co., New York, 1940.
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Figure 4

Kronig-Penney one-dimensional model.

V(X)

-(o~b) -bO0 a aib

p sin 3a + cos/3a

7 2v737 /3a-

Figure 5
The allowed values of P~a given by equation (30)

are shown by the heavy line segments on the P a axis.



21

21/2
(25) = A coso x + B sing x; P = (2mE/fi2 )  .

In the region of constant potential V , the solution is

21/2
(26) *2 = C coshyx + D sinhyx; y= [ 2m(V - E)/ 2 ]

There is the usual requirement of continuity of wave function and its

derivative at x = a and the additional boundary condition because of

periodicity that

ik(a + b)(27). *2 (a + b) =e 1(0)

* 2 (a + b) = eik( + b (0)

Substitution of (25) and (26) into (27) and solution of the determinantal

equation leads to

(28) cos k(a + b) = cos a coshyb +[(y2 - 2)/20y] singa sinhyb.

Equation (28) defines the allowed values of energy, but the example may

be simplified by letting V approach infinity but in such a way that the0

product bV remains finite. By defining the quantity

(29) P = lim (mabVo/ 2

b-O0

we see that in the limit, (28) approaches

(30) cos ka = (P/Pa) sing a + cosp a

Figure 5 is a plot of the right side of (30) as a function of P a with a

fixed value of P = 37/2. Since the value of the cosine term can only lie

between ± 1, it is seen that only certain bands of energy are allowed and

these are separated by regions of forbidden energies. If P is small the
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forbidden regions disappear, whereas if P approaches infinity, the

allowed values of 0a reduce to the points niT, (n = ± 1, ± 2, --- ).

P can be considered as indicative of the degree of binding of the

electron. With P = 0, perfectly free electrons are represented with no

forbidden values of energy. As P approaches infinity, there is no

energy dependence on k, and the electron is completely bound.

Advancing to a three dimensional iattice we proceed to determine

those values of wave vector for which a discontinuity in energy can be

expected. To this end it is convenient to work with the reciprocal

lattice.

We let the vectors al, bl, c -be the primitive translations of

the crystal lattice. Reciprocal lattice vectors a2 , b 2 , c 2 are defined by
the following relations

(31) a 1 * a2 bl b1 . 2  c 1 *c2 =

a2'b a * c = b 2c I b 2a I c 2a c 2'b = 0

The vector a2 is perpendicular to the plane of b1 and c1 and is
b I X c

(32) al. [bXc "

Similar relations hold for the other vectors b2 and c2 .

Since these reciprocal lattice vectors have the same dimensions

as k, the electron wave vectors, they may be considered as residing in

k-space. If we define a vector Ki as

-i
(33) K = 2r [1 a 2 + m b 2 + n c2 , ,m,n are integers

the Brillouin zone may be found directly from the equation for Bragg re-

flection from crystalline planes:

-- 2
(34) 2 k'K+ K = 0

Geometrically, the first Brillouin zone (1st B. Z.) is constructed as

follows. The center of the zone is symmetrically located at the point
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k = 0. From this point K vectors are drawn and each of these is bisected

perpendicularly by a plane. The smallest volume enclosed by the planes

is called the 1st B. Z. In this construction any point on the surface of

the I st B. Z. can be reached from one or more other points on the surface

by translation through a vector K. The surface of the zone is therefore

defined by planes which are mapped by k's which satisfy (34).

It is also possible to reduce all wave vectors to ones which lie

in the 1st B. Z. , since an appropriate K can be added to any k to give a

k lying in the first zone, and still preserve the Bloch form of (24). If

(35) k'=k + K

then

-ik r -- eI -K).r

(36) -(r) =u - (r) e

But the function exp(-iK. r ) has the same periodicity as the lattice and

the function u-(r ) and may therefore be absorbed in the latter. In this
k

scheme, the wave functions may be taken to be multi-valued functions

of the k's in the unit cell of the reciprocal lattice. These results are

known as the reduced zone scheme and that volume in k-space in which

all the wave functions are considered is called the first Brillouin zone.

For the face-centered cubic lattice, the 1st B. Z. is defined by

the following K vectors

A A A
(37) 27r/a(± Q+) and

AA A
22/a( 20 2r/a( 2J) , 27T/a(± 2k)

The zone is a truncated octahedron and is shown in Figure 6.

It should be noted that the shape and size of the B. Z. is de-

termined solely by the geometrical parameters of the crystal and is not

influenced by the magnitude or form of the periodic lattice potential.

The points of symmetry shown in Figure 6 are in accordance with the
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kz

, K

Figure 6

First Brillouin Zone for Face-centered Cubic Lattice

6
original work of Wigner et. al. Symmetry properties of wave functions

at various points ih the zone are discussed by Callaway 7 In a survey of

electron energy bands in solids.

If the periodic potential Is small enough to be treated as a

perturbation, the electrons are "almost free", and both the potential and

the function u-(r) may be expanded in a Fourier series:

(38) V(r) = v(K) ei 'r

Ki

(39) u -) c c(K) e i r

K.1

The coefficients v(Ki) and c(Ki) may be written as

- f 1 V(- e-iK "r dT

(40) v(Ki ) = r e

(41) c(Ki) = ur) eiK( r d

6L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.

5.0, 58, (1936).
7J. Callaway, Solid State Physics, Vol. 7, Academic Press,

New York, 1958.
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where the integration is over the unit cell of volume 62.

Upon substituting this potential, (38), and Bloch function, (39)

in the Schroedinger equation one obtains the expression8

2 -- 2-(4 2) (E k - ~v(0) - fh k +K. /2m) c (K cKK) 1
m

The term v(O) denotes the constant term in the potential. If we assume

that all the other coefficients of the potential are small in comparison to

v(0), then we can expect the expansion of uk(r) to contain a large c(0) in

comparison to the other coefficients. On this assumption we can drop

the products of coefficients other than the leading ones and obtain

22 - -  2
(43) (E-- v([)- 2 k + K I '2m c(K) = (0'(K) for K# 0

and
2 2(44) (E-- v(0) - 1i k /2m) c(0) = 0 for K 0

k

Solution of (44) for E- and its substitution in (43) leads to an equation
k

for the coefficients c(K,) in terms of c(0):

(4 5) c (K) -c(O) [ 2mv(Ki)/-fi ]/(2kK -K)

The leading coefficient, c(0), is determined by normalization of the

Bloch function.

Difficulty arises with this approximation when the value of k

approaches a zone boundary; at this point the denominator of (45)

approaches zero. Prior to but near this point, one of the c(K ) will be

large if the corresponding v(K.) does not vanish. Focusing our attention

on the particular v(K) we return to (42) and neglect all coefficients

except v(K) and c(0) and obtain
I

2 2
(46) (E- - v(0) - Th k /2m) c(0) = c(K) v(-K)

ki
2 2,2 K

(E- -v(0) - 1i I+ K 2/2m) c(K c(0)v(K
k

8J. R. Reitz, Solid State Physics Vol. 1, p. 30, Academic

Press, New York, 1955.
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A solution for E-- isk

1 0 2 0 021/
(47) Ek j (E: + 0 1[ 4.1v(Ki ) 2 + - 21/2

where
0= t+2 2  o2

(48) E = v(O) + /2m , E =v(O)+ 1 I k -K /2m

Equation (48) simply gives the energies of a free electrori in a constant

potential. Now, if k is far from a zone boundary, the term (E- - E-)

is much larger than v(K) and (47) has the solutions

(49), -

In this region of k space, we have essentially free electron energies.
0-0

Near a zone boundary, however, E---E , and the roots of (47)
k k'

are separated by 2 I v(Ki) I . Clearly, a gap in energy exists at the zone

boundary and its value is twice the Fourier component for this boundary.

It should be pointed out that an energy gap at one boundary does

not necessarily lead to a gap in the entire energy spectrum. If the v(K)

are small enough, the gap which occurs for one direction of k will not

occur over the same energy range for a different direction of k.

Despite the several approximations which have been made above

in deriving wave functions for an "almost free" electron, this type

approach has enjoyed remarkable success in the treatment of certain

metals. In these cases, the conduction electrons are almost entirely

"s" or "p" in character, and there is no overlap of a "d " band with the

conduction band. Aluminum, as an example, falls in this category.

On the other hand, elements such as the noble metals, appear

to have a "d" band which overlaps the conduction band. Under these

conditions, the "d" band interacts strongly with the "s" band giving

rise to perturbing potentials sufficiently large that the simple perturba-

tion treatment is no longer applicable. To determine the energy versus
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wave vector relationship in these cases requires more extended analysis.
9

An excellent summary of methods has been provided by Reitz.

C. Interaction Between Electrons and Electromagnetic Radiation

The semi-classical treatment of radiation is developed in numer-
10,11

ous texts I ' and will not be repeated here, The use of time dependentI

perturbation theory leads to the following expression for the transition

probability per unit time between states a and b

2 2 -

(50)P r e2 *e r 26 -W)
ab 2 2 I(Wab) lI'b gradA Ia d-i 6(Wab

m cw ab

where I(w ab) represents the intensity of the incident beam of radiation

in the immediate region of the energy of transition a-b, and the grad

operator is taken in the direction of the radiation vector potential.

Let us consider (50) in the band approximation where * a and *Ib

are determinantal wave functions composed of Bloch one-electron

functions. Since the integral in (50) consists of individual one-electron

operations by the grad operator, the integral vanishes because of

orthogonality if ga and I b differ by more than one Bloch function. The

integral also vanishes if the electron spins in the two Bloch functions

differ. Therefore, the absorption or emission of a photon can change

the state of only one electron in the system but cannot change its spin.

-If the two Bloch functions which differ in (50) are labelled *-

and , the integral reduces to

(51) e -ik.re ik"r

fu* e i (k - -) r [grad u- + i u -] e 1 r

k uk'

9J. R. Reitz, op. cit.

10L. I. Schiff, op. cit.

11D. Bohm, Quantum Theory, Prentice-Hill, Inc., Englewood

Cliffs, N. J.
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All the terms in (51) have the periodicity of the lattice except the ex-

ponential term, so the expression may be written:

(52) et~kk+?)rt f ei( +f -k " (rri)u- [grad u7+ tk' u-] drt
r i  i

where each integral covers one unit cell of the lattice and ri connects a

corner of this cell with the origin of coordinates. But the exponential

term in the sum, exp i(k' +?J- k).ri, vanishes unless

(53) + 77- k =K.

Now, even at wavelengths as short as 100 A the magnitude of 77 is only
6 86 X 10 whereas a typical value for K is 3 X 10 , so 77 can be neglected,

and we are left with the requirement that the transition probability

vanishes unless

(54) k'-k=K

This result restricts all transitions to "vertical" ones in the reduced

zone scheme as shown in Figure 7.
E(k)

Ef

k

Figure 7

"Vertical" Transitions in Reduced Zone Scheme

Thus far we have assumed that the incident radiation is polarized

and incident upon a single crystal. The grad operator of (50) is that

component of the gradient operator which lies in the direction of the
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vector potential A. Let us now consider the case of unpolarized radi-

ation where the direction of A is randomly oriented in a plane which

lies at right angles to the direction of the propagation vector 77.

We make the dipole approximation by equating exp (ij • r) with

unity and rewrite the integral of (50) as a matrix element of momentum:

(55) f 'b gradA IadT = p f AadT =  (#

From matrix theory we have the result that

(56)(p) =1mw (r)
(56) ab ab ab

and we can write the integral in terms of that component of the radius

vector which is in the direction of the vector potential:

(57) f1P gradA4fdT = m W a( A a .

In terms of this matrix element, the transition probability becomes

(5)P =4e 2 i2 1 U 2
(58) Pa--b-4 2  I(Wab) I (rA)ab 2

For totally unpolarized radiation, one must consider the angle

between the direction of A and the vector (r) ab But in a crystal, the

vector (r) ab can assume all directions, so we can write the matrix

element of (58) as

1 2-" 2 2(59) 1 (rA)ab I I (r)abI cos O

where (p is the angle between A and (r) ab and averaged over

all directions in three dimensional space. Under these conditions the

transition probability becomes

41r2 e ....

'60) P (e f - e -ik.r u eik'r 2
ab 2 IWab I ue grad e d2kI

X 6 (w~- Ow) 6 (kQ-k-K)x ( -
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D. Band Structure and Optical Constants

Given an incident beam of radiation which can produce interband

transitions, the rate at which energy is removed from the beam is:

dW 2
(61) -- =aE = NiwP

where

a = that conductivity related to transitions

E = time average of the square of the electric field

N = number of electrons which are permitted (by delta functions)

to make the transitions

P = transition probability per unit time

When the proper substitutions are made in (61), the solution for

conductivity is 12

e h f * -ik'r ik'.r 2(62)0=r 247~ 2 2  Ifu -- e gradu-, e "d-

247T 2vm 2 k'

6(W- -- C) 6 (k- k- K-)k',k

From Chapter II, Equation (8), we had the result

or =nkv

where n and k are quantities which can be obtained experimentally from

reflectivity measurements. Thus, if we concern ourselves with a

wavelength region where conductivity is due largely to interband tran-

sitions, we have an experimental method of evaluating the sum in (62).

If, however, the transition probability term in (62) is not highly

dependent upon k, we can use the experimentally determined nk product

and (62) to ascertain the number of electrons involved in transitions at

a given wavelength. With this analysis we can gain some information

regarding the band structure of the metal being irradiated.

12F. Seitz , op. cit. , p. 651.
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A brief examination will now be made of the consequences of

the delta functions found in (62).

As an example let us consider the case of the "almost free"

electrons discussed earlier. Let the wave vectors of the ground and

excited states be k and k' respectively, then from (54)

k' = k + K.

The energy difference between the two states will be very nearly

t2 2
(63) E (M)-E(k) =- (K + 2kK)

with a corresponding frequency of

(4 2 --- "h 2 - -(64) v-= z47m + 2k.K) = (K + 21kI K I cosp)

The angle 0 is that between k and K. The absolute value of k is

47TMl K 2

(65) IkI-
2 I KI cosO

For a given K and v, 0 can range from zero, (or 7T if the numerator of

(65) is negative), to a value which produces kf on the Fermi surface.

(Transitions out of ground state cannot occur for states with k > kf since

these are unoccupied.) Clearly, then, states from which transitions can

occur lie on a disc in k-space. The vector K is perpendicular to this

disc and passes through its center. An example of this situation is

shown in Figure 8. The figure presents a montage of two cross sections

of the Ist B. Z. for the face-centered cubic lattice. Centered in the

zone are concentric spheres representing different energy levels. The

largest inner sphere denotes the Fermi surface with an energy of 5. 5 ev.

The volume enclosed by the Fermi surface is one-half the volume of the

1st B. Z. as is the requirement for any mono-valent metal. 13 Three sets

of disc radii are drawn, one set for each of the directions (100), (110),

1 3 C. Kittel, op. cit. , p. 314.



32

48

32 214112 2 8 3

15 8

16ur
Dicsi kspc fomwic itr-an rasiinsc14ccr

Ths xape s o "lms fee 1etrn
10 aF CC atie



33

and (111). These sets correspond to transitions involving the Vectors:

" 27 A A
K = a+ 21 ± 2J respectively.

a A

Each disc radius is labelled with the energy required for a transition in

the appropriate direction. For instance, a 1 5 ev. photon could produce

transitions in the (100) and (111) directions but not in the (110)

direction.

In this example, a spherical Fermi surface gives rise to flat

discs in k-space. If, instead, the Fermi surface departs from sphe-

ricity because of sizeable energy gaps at the zone faces, the disc will

no longer be flat and may become warped.

Evaluation of (62) for conductivity amounts to counting those

electrons which are eligible for transitions at a given wavelength and

weighting the count by a factor related to the transition probability of

each electron. In this interpretation, (62) may be written as:

e2h
(66) ( 4 2h n- P-r -

24w vm a kK

where

nj-- = N = total number on that disc corresponding to

k a given K

P__ = I fu eikr grad uj- e drj 2

An evaluation of (66) is thus reduced to a measure of N and P--. N can

be obtained from the areas of the discs and if P--were independent of
k'k

k, the problem would be simplified considerably.

If we consider electrons in a single crystal influenced by plane

polarized radiation which induces transitions from state k to k"+ K, the
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14
effective mass tensor can be written as

2 , IPi I k + K ><k + K Iplk >
(67) (AL) 6 iJ + 2_ kpIkK <+K ~k

Im - E- -- E-ijK k K k

For an electric field oriented in the x direction (67) becomes:

b I f~wgradx k" d ' T
(68) () =1- h f f k,, k2

2~ V
m xx .2i m k',k

But the effective mass is also related to E(k) by

2

(69). (mM) m
m -h 2 aki ak

and 2

(70) m 2 2  2
m xx 8k

x

Combining (68) and (70) leads to

*2 2
h f f gradx *k

' dr 2  m aEk
(71) 2V_ +- ~ 2 k=

272m K" _fi 8k
K x

In a polycrystalline material with random crystal orientations the grad

operator of (71) cannot be taken in the x direction only but must be

averaged over all directions as was done in Equation (59), with the re-
15

sult :

(72) h ___-_' + 8 E - 1

2
67Tm k kk 31i 8k2

K E

In this expression, 2 is an average value taken over all possible
8k

directions of Jkl and is indicative of the average effective mass of those

1 4 C. Kittel, op, cit. , p. 288.

15F. Seitz, op. cit. , p. 650.
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electrons which lie a distance I kI from the center of the Brillouin zone.

If we have a situation where this term is independent of k, then P-
kink

will be independent of k and the terms of this sum can be assumed to be

independent also.

Returning to the example given in Figure 8, we make the

assumption that the effective mass of the "almost free" electrons is

constant over the range k = 0 to k = k This assumption is valid if
- kn

E(k) goes as k in this range of k-space and the value of n is very

nearly 2. Under these conditions we can proceed to evaluate (66) as a

function of wavelength, keeping PT as an unevaluated constant.

To obtain the total number on a disc we need the area of the

disc and the density of states in k-space. Recalling that k Xx

2rn x /L and ky = 2n y/L , we can write

2
X dy =- dn dn = 27Tkdk(7) kxY L x y

Since each position in k-space can be occupied by two electrons, one

with spin up and one with spin down, the total number will be related to

the disc area, A(k), by

(74) N k2  A(k)
L 2 27T 2 2 "

Since (66) is summed over all K consistent with the delta func-

tion one must also consider that there are eight K vectors of length

213 it/a, six of length 47T/a, and twelve of length 2 18 7 /a for a face-

centered cubic lattice, (Equation (34), Chapter III).

With the aid of the above information, the conductivity of the

example of Figure 8 was computed for wavelengths of incident radiation

from 300A to 2500A. The results are given in Figure 9. The lack of

character in this curve is largely due to the fact that a spherical Fermi

surface was assumed. If the surface were bulged sufficiently in the L

direction, for instance, contact between the surface and zone face

would occur. As we shall see later, such a distortion would give rise
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to higher transition probabilities from states near the zone surface and

therefore a higher conductivity to photons of energy around 5ev. or

2400A. This effect would also be observed at other wavelengths for

which a disc contacted or came near a zone face.

In this respect, therefore, the optical constants, n and k, can

be effectively utilized to gain some information as to the band structure

of a metal.



CHAPTER IV

EXPERIMENTAL RESULTS AND DISCUSSION

A. Results for Pure Silver

Measurements of reflectivity for four different angles of inci-

dence over the wavelength range 304A to 1671A were made on silver

films. Representative results are plotted in Figure 10 and are given in

numerical form in Table I.

From these data, the optical constants n and k were determined;

these values are also griven in Table I. Figure 11 shows the results of

using Eqn. (II - 8) to calculate conductivity. In contrast to the free

electron conductivity, silver conductivity displays sharp peaks at 600A

and at approximately 300A. Since the Drude conductivity in the wave-

length range considered here is less 10- 2 times the observed values, it

can be assumed that the effects of interband transitions predominate.

A computation of conductivity for silver was made, using the

theory developed in III-D. A Fermi surface and band structure based on

the theoretical calculations of Segall16 were used in this computation.

Segall derived the E(k) relationships of silver for two different po-

te -tials. One potential was determined from the free ion Ag Hartree

functions, (no exchange energy considered); the other was derived from
17

the Hartree-Foch free ion functions calculated by Worsley. The first

potential gave energy gaps of 5. 2 and 4.3 ev. at the points X and L

respectively with the p-like states at these zone boundaries lower in

1 6 B. Segall, "Theoretical Energy Band Structures for the Noble

Metals", General Electric Report No. 61-RL-(2785 G), July 1961.

1 7 B. H. Worsley, Proc. Roy. Soc., London, A 390, (1958).
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16B. Segall, "Theoretical Energy Band Structures for the Noble

Metals", General Electric Report No. 61-RL-(2785 G), July 1961.

1 7 B. H. Worsley, Proc. Roy. Soc., London, A 247 390, (1958).
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TABLE I

SILVER REFLECTIVITY DATA

X-A 0 RBm RBk %R n k

304 D 57.0 35.0 0.93 0.41
70 38.5 32.0 29.5
50 34.1 32.0 9.5
30 32.4 31.4 4.6
10 32.5 31.5 4.5

406 D 67.8 43.7 0.88 0.24
70 48.0 40.9 29.6
50 42.2 40.4 7.5
30 40.6 40.0 2.5
10 40.6 40.2 1.7

461 D 80.5 21.5 0.90 0.40
70 41.0 20.4 34.9
50 27.0 20.1 11.7
30 23.3 20.0 5.6
10 23.1 19.8 5.6

584 D 64.6 2.8 1.10 0.63
70 23.1 2.2 33.8
50 11.4 2.1 15.1
30 7.8 5.8 9.4
10 7.2 1.8 8.7

735 D 96.2 4.5 .1.10 0.69
70 36.6 3.6 16.7
50 18.9 3.6 16.7
30 13.1 3.6 10.4
10 12.0 3.6 9.2

932 D 41.8 7.6 1.18 0.77
70 19.2 6.8 36.3
50 12.5 6.2 18.4
30 10.2 6.0 12.3
10 9.4 5.9 10.2
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TABLE I (Continued)

SILVER REFLECTIVITY DATA

X-A 0 RBm RBk %R n k

1048 D 68.5 2.1 1.19 0.59
70 25.0 1.5 35.4
50 12.0 1.5 15.8
30 7.4 1.5 8.9
10 6.1 1.5 6.9

1216 D 90.5 18.4 1.26 0.49
70 37.5 13.2 33.7
50 21.9 12.3 13.3
30 16.9 11.5 7.5
10 1S.4 11.1 6.0

1311 D 82.8 21.2 1.09 0.45
70 38.0 17.0 34.1
50 24.1 16.0 13.1
30 19.8 15.6 6.8
10 18.5 15.0 5.7

1470 D 52.9 20.0 1.02 0.45

70 23.0 7.6 35.9

50 9.9 4.1 13.5
30 5.3 2.9 5.6
10 4.1 2.0 4.9

1671 D 85.0 10.2 0.87 0.67
70 45.0 6.8 51.1
50 25.1 5.0 26.8
30 16.2 4.2 16.1
10 13.2 3.8 12.6
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energy than the s-like states. By adjusting the volume enclosed by the

Fermi surface to be one-half the volume of the B. Z. , he determined that

the Fermi surface of the first potential contacted the zone surface at L

but the neck diameter was greater than observed values 1 8 by about 40

per cent. Also, on the basis of other data, the d-bands appeared too

high by about 2 ev. The second potential gave a similar band structure

but the gaps at X and L were 3. 0 and 2. 4 ev. , there was no contact at

L, and the d-bands appeared to be too low. Segall offered arguments as

to why placement of the d-bands approximately midway between the two

calculated positions should yield the correct E(k) structure. We have

therefore used an E(k) which is an average of the two determined by

Segall.

Since there are no theoretical calculations or other evidence

available for the higher energy region, we have assumed free electron

energies above 20 ev. and let the gaps approach zero at high energies.

Justification for these two assumptions will be made later. The E(k)

adopted for this computation is shown in Figure 12 and the Fermi surface

compatible with this E(k) is given in Figure 13,

A computation was first made in which P- was assumed to be

constant over all occupied states including those immediately adjacent

to the zone faces. Disc areas were determined graphically in the

following manner. First, a K vector which could be associated with a

transition was selected. Then, for a given wavelength, two values of

k were located which differed by K and which were separated in energy

by an amount corresponding to the given wavelength. Selection of

sufficient pairs of k' s which satisfied these requirements defined the

area in k-space from which transitions could occur. This process was

repeated for different wavelengths over the region of interest and for a

18 The Fermi Surface, edited by W. A, Harrison and M. B. Webb,
John Wiley and Sons, Inc., New York, 1960.
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fixed K. Next, a different K was selected and different areas were

again determined for the various wavelengths. This procedure was

continued until the supply of K s which could satisfy the delta function

was exhausted. Examples of the areas so delineated can be seen in

Figure 13. Each dotted line indicates the area from which transitions

can occur for the photon energy given immediately above the dotted

line. It should be noted that only transitions from conduction to ex-

cited bands was considered.

In this first computation, therefore, all the areas determined in

this manner at a particular wavelength were simply summed, i.e. , a

count was made of all electrons eligible for transitions at a given

photon energy. This sum was used in Equation (66) and a solution for

(r was obtained with P-- - held constant. The results of this approach
k' k

are given in Figure 11 and Table iI for comparison with the measured

conductivity.

It is seen that general agreement is obtained in this case if5 -2
P- -has a value of 105 cm . This is particularly true in the range

k' k
of 700 to 1700A or 7.3 to 17. 6 ev. , and aside from discrepancies in the

heights and depths of peaks and valleys, general agreement extends to

the shortest wavelength studied, 304A. A look ;t Figure 13 shows us

that the higher energy transitions occur mostly from states near the

center of the zone while the lower energy ones occur from states

generally farther from the zone center. This condition, though not con-

clusive in itself, can be taken as evidence that P- -is a slowly vary-k' k
ing function of k.

We consider now those discrepancies between theory and ex-

periment in the wavelength region below 700A and attempt to adjust

P- - using the sum rule given in Equation (68).

Analytic expressions derived for E(k) in the X and L directions

are:
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TABLE II

DATA USED IN SILVER COMPUTATIOIN
(EQUATION 66)

X-A A(K2 A(KL) A(K ) ZA(K) u/P X 10 - 9

300 18.2 22.6 17.3 58.1 28.4

400 16.4 19.0 0.2 35.5 23.1

500 13.7 20.5 34.2 27.9

600 12.8 20.5 33.3 32.6

700 11.1 17.6 28.7 32.8

800 8.9 14.8 23.7 31.0

900 6.0 12.8 18.8 27.6

1000 3.1 11.2 14.3 23.3

1100 1.8 9.4 11.2 20.0

1200 0.9 8.0 8.9 17.4

1300 0.5 6.5 7.0 14.8

1400 0.2 5.3 5.5 12.6

1500 0.1 4.4 4.5 11. 1

1600 3.5 3.5 9.1

1700 2.9 2.9 8.0

The columns headed A(K) give the area in k-space in units of
2 2
1T /a

The subscripts on the K 's indicate direction in k-space.
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(1) E(k) = 0.51k 2 + 3.1, 0<k<l. 1

E(k) = 1.31k 2 + 2.2k - 0.21,1.<k<1.8 X direction

2 -5 17 3
(2) E(k) = 2.31k 2 - k + 2.5 - 5.4X10 k 1 *" 3

L direction
for 0< k< 3.

These E(k) were substituted in Equation (68) to obtain the results of

Figure 14 for transitions from the conduction to the excited bands. In

this we see that the term which contains the sum of P--over all K's is

essentially constant over most of the occupied states and shows appre-

ciable change only near the point of contact at the center of the hex-

agonal face. In a first approximation, then, the sum of P jj-can be

assumed constant for all k's except those near the point of contact.

Taking these results into consideration, a second computation of

conductivity was made. In this, the second curve of Figure 14 was

averaged over the range 1. 3< k< 1. 73 and the small areas in the "neck"

of the Fermi surface were multiplied by this average. As the form of

Figure 13 suggests, only transitions involving energies around 40, 20

and less than 7 ev. were affected. The result of this correction was to

reduce the discrepancies between calculated and measured conductivity

as is indicated in Figure 15. A secondary peak now appears in the

theoretical results at 600A in agreement with the measured values. It

appears, therefore, that this observed peak is not due to transitions

from some other band such as perhaps the d-band, but to a large ,--

near the zone boundary of the conduction band.

Since the observed and calculated widths of this peak are equal,

and since they coincide in wavelength, we have evidence for the valid-

ity of 1) the assumed area of contact of the Fermi surface and 2) the

assumed E(k) at high energy, i.e. , if E(k) at high energy did not go as

i2 k 2/2m, this secondary peak would be calculated at a different wave-

length.
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On the basis of these results, the evidence for the size of gaps

at high energy is not clear. The minimum in conductivity between 300

and 400A is at least in part due to the structure of the conduction band;

there are simply fewer electrons available for transitions in this energy

region. If a gap of a few ev. exists in the X direction at 40 ev. and in

the L direction at 30 ev., we can expect minima in conductivity at 330

and 440A. A gap in the K direction at high energy would create effects

outside the range of our observation. The fact that the measured mini-

mum at 400A is lower than the calculated value suggests the presence of

a high energy gap, but without more experimental data than is now

available, nothing quantitative can be deduced. At any rate, the in-

clusion of a small gap at high energy would not appreciably affect the

results considered here.

Although our experimental data ends at 1671A, it is interesting to

examine the theoretical model at longer wavelengths. In Figure 13 we

see that transitions from conduction to excited band will continue in the

L direction down to a photon energy of 3.3 ev. Although these originate

from discs of small area, they are in a region of large P- ,-and should

contribute to another peak in conductivity beginning around 1800 A and

ending abruptly at 3700A, (3.3 ev.). In this same range, transitions

can occur from the d-bands to unfilled states in the conduction band.

The E(k) structure of Figure 12 predicts the following

X5 to Fermi level - - 3.2 ev. , 3850A

L3 to Fermi level - - 3.1 ev. , 3980A

K2 to Fermi level - - 3. 4 ev. , 3630A

as the minimum energies associated with these transitions, and very

nearly the same limit as conduction to excited band. The maximum

energy change to be expected in a d-like to p-like transition should

occur at X3 to X41 with 8.2 ev. (1500A). Since the upper and lower

limits of these two effects very nearly coincide, only one peak should
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be observed in silver conductivity in the range of 1500 to 4000A. The
19

experimental work of Ehrenreich and Philipp provides corroboration of

this extension of the theory. They report a peak in silver conductivity

centered at approximately 2000A with edges at 1500 and 3700A, in con-

trast to copper which has these two peaks well separated in wavelength.

On the basis of these results one can conclude that the E(k)

structure and Fermi surface derived from Segall's calculations are

essentially correct, and that this approach to the computation of con-

ductivity is basically sound. The use of the disc model reduces much

of the ambiguity previously associated with interpretation of the optical

constants in the far ultraviolet.

B. Silver-Indium Alloy

To observe the effects of a change in the electron/atom ratio,

a film which contained 10. 0 at . % indium and 90. 0 at . % silver was

studied. (The preparation of alloyed films is discussed in Chapter V.)

Indium was chosen as the solute because of its proximity to silver in

the periodic table and its possession of three valence electrons. With

this choice of solute and concentration, current binary alloy data20 in-

dicate that the alloy retains the f. c. c. structure of silver, and thus,

the same Brillouin zone. Under these conditions, it was felt that

optical data could be of help in resolving questions regarding the band

structure of binary alloys. The history of this problem will be reviewed

briefly.

Derivation of the Hume-Rothery rules for alloys is summarized
21

by Kittel. "Hume-Rothery first drew attention to the importance of

1 9 H. Ehrenreich and H. R. Philipp, Phys. Rev., 128, 1622,
(1962).

2 0 M. Hansen, Constitution of Binary Alloys, McGraw-Hill Book

Co., Inc. , New York, 1958.
2 1 C. Kittel, op. cit. , p. 325.
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the average valence electron/atom ratio as a kind of universal param-

eter in the description of the properties of alloys. He was concerned

with the occurrence of certain alloy structures at a definite electron/

atom ratio... .

Table III gives representative data concerning these remarks.

TABLE III

ELECTRON/ATOM RATIO AT a-PHASE
BOUNDARY FOR SEVERAL ALLOYS

Alloy e/a

CuZn 1.38

CuAl 1.41

CuGa 1.41

Cu Si 1.42

CuGe 1.36

AgZn 1.38

AgCd 1.42

AgAl 1.41

AgIn 1.36

"The Hume-Rothery rules find a simple explanation on band

theory in the approximation of nearly free electrons. Jones pointed out

that the observed limit of the a-phase (fcc) occurs very close to the

electron concentration of 1.36 for which the inscribed Fermi sphere

makes contact with the Brillouin zone surface for the fcc lattice. The

observed electron concentration of the A-phase (bcc) is close to the

concentration, 1.48, for which the inscribed Fermi sphere makes

contact with the Brillouin zone surface for the bcc lattice....

"It is apparent that there is an intimate connection between the

electron concentration at which a new phase appears and the electron

concentration at which the Fermi surface makes contact with the
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Brillouin zone boundary. The general explanation of the association is

that it is expensive energetically to add further electrons once the

filled states contact the boundary. Additional electrons can be accom-

modated only in states above the energy gap characterizing the boundary

or in the states near the corners of the first zone. The number of states

near the corners falls off markedly as a function of energy. In this

circumstance it is often energetically favorable for the crystal structure

to change, the final structure being one which contains a larger Fermi

surface .

"The transformation from fcc to bcc is illustrated by Figure 16

showing the number of states per unit energy range as a function of

energy, for the fcc and bcc structures. It is seen that as the number of

electrons is increased, a point is reached above which it is easier to

accommodate additional electrons in the bcc lattice.

0.4
bcc

0.3-

g(E) fCC
0.2 

Ji

0.1

I I I

0 2 4 6 8
E-ev

Figure 16

Density of States, g(E), for fcc and bcc Lattices,
as a Function of Energy

This simple and elegant explanation of the Hume-Rothery rules

had to be either discarded or severely modified when the accumulation

of experimental and theoretical work later pointed to the fact that the

Fermi surface contacts the zone boundary for many metals in the pure,

unalloyed state. It appears almost without question now that contact is
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achieved at the hexagonal face for the noble metals copper, silver, and

gold. Independent measurements and interpretations of the anomalous

skin effect, de Haas-van Alphen effect, cyclotron resonance, ultrasonic

attenuation, and the optical properties all seem to confirm the latter

statement.

At this point a prevailing theory was the one of rigid band

structure, i.e., that the E(k) relationships of a metal were unchanged

upon alloying with another metal, at least up to those concentrations of

solute which precipitated a phase change. In 1958, Cohen and Heine 2 2

contradicted this concept with the argument that upon alloying: (1) the

E(k) must change, (2) the Fermi surface pulls away from the point of

contact and becomes more spherical, and (3) the energy gaps at the zone

faces either increase or decrease according to whether the s-like state

at the face was originally lower or higher than the p-like state. Much of

their argument was based on considerations of the s-p excitation energy2324
of the free atom and on the specific heat data of Rayne 2 3 ' . In partic-

ular, they proposed that E < E for copper and silver but E s< E forp s p

gold, and that upon alloying this gap decreases for copper and silver but

increases for gold. Their calculations give an energy gap at the point

L of 0. 10 ev. for silver, in marked disagreement with the value of 3.3

ev. obtained by Segall.

Biondi and Rayne, 25 in 1959, performed optical absorption meas-

urements on a series of a-brasses over the wavelength range 0. 23-4. 0

microns using electropolished bulk specimens. In the vicinity of 4000A,

their data can be interpreted as confirmation of the Cohen-Heine model.

Some of their results are reproduced in Figure 17.

2 2 M. H. Cohen and V. Heine, Adv. in Phys., 7, 395, (1958).
23J. A. Rayne, Phys. Rev., 108, 22, (1957).

24J. A. Rayne, Phys. Rev., 110, 606, (1958).

2 5 M. A. Biondi and J. A. Rayne, Phys. Rev. , 115, 1522, (1959).
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80 A-pure Cu
B - 15% Zn

60 C-30%Zn

40
0
#A

20

3000 5000 7000

Figure 17

Optical Absorptivity vs. Wavelength
(Biondi, Rayne)

For pure copper, we can attribute the peak at 3000A to transitions from

conduction to excited band, L2 ' to L and the peak at 5700A to transi-

tions from the d-band to the p-like states immediately above the Fermi

level. A shift of this first peak to longer wavelengths as in curves B and

C can occur only if the gap, L 2 - Lit decreases as proposed by Cohen

and Heine. At the same time, this alloying increases the electron/atom

ratio and the Fermi level. Thus, since greater energy is required for

d-band transitions, the second peak can be expected to move to shorter

wavelengths.

Despite these results, their infrared absorptivity data cause

Biondi and Rayne to conclude that the Fermi surface becomes more dis-

torted upon alloying, necessitating an increase in gap.

In 1961, Ziman 2 6 reviewed the state of affairs and advanced

some views of his own. We quote some of his conclusions.

"We have no guarantee that the electronic energy surfaces in k-

space remain unchanged when other metals are added to a noble metal.

26J. M. Ziman, Adv. in Phys. 10, 13, (1961).
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... Indeed, Cohen and Heine have specifically proposed that this rigid

band hypothesis must be abandoned if we are to understand certain

properties of the alloys of the noble metals. It would obviously be

valuable to have an independent check on this point. "

"...There is no serious inconsistency between the observed

transport properties and the assumption that the energy surfaces dis-

covered by the topological techniques remains more or less rigid when

the temperature is raised or when the metal is alloyed with other metals.

If there is any sphericizing effect of alloying, it does not seem enough

to draw the Fermi surface out of contact with the zone boundary. "

It was with these questions in mind that the optical properties

of an alloy of silver were studied.

Reflectivity of the indium alloy versus wavelength for four angles

of incidence is illustrated in Figure 18 and the data are listed in Table

IV. Except for a decrease at 304A, the reflectivity curves for the alloy

do not differ greatly from those for pure silver. However, the conduct-

ivity as obtained from the optical constants shows marked change in

several respects. For comparison the conductivity of both silver and

its alloy are plotted in Figure 19.

Despite the reduction of reflectivity of the alloy at 304A, con-

ductivity remains about the same; this is another illustration of the

shortcomings of using reflectivity alone as a characterizing parameter.

The minimum previously observed at 380A has shifted to 450A and from

this point on to about 1200A, conductivity has been consistently re-

duced. Perhaps the most striking change is the loss of the secondary

peak at 600A, the one which had been attributed to contact of the Fermi

surface with the zone face. Finally, we find the appearance of a broad,

low peak between 1200 and 1800A which was not observed for pure

silver.

At this juncture we have the opportunity to investigate the

validity of the rigid band concept. If, upon alloying, the band structure
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TABLE IV

SILVER-INDIUM REFLECTIVITY DATA

A-A 0 RBm RBk %R n k

304 D 36.5 20.6 1.04 0.34
70 22.4 19.0 21.4
50 19.5 18.6 5.7
30 19.0 18.5 3.1
10 18.8 18.4 2.5

406 D 49.2 19.6 0.95 0.30
70 25.6 18.0 25.7
50 19.5 17.5 6.8
30 18.3 17.6 2.4
10 18.5 17.9 2.0

461 D 89.5 15.5 0.92 0.31
70 32.5 10.6 29.6
50 14.6 8.9 7.7
30 10.6 8.5 2.8
10 10.1 8.4 2.3

584 D 65.0 1.8 1.00 0.45
70 20.6 1.4 30.4
50 8.3 1.4 10.9
30 5.0 1.4 5.7
10 4.5 1.4 .4.9

735 D 81.3 1.4 0.98 0.54

70 29.0 1.0 35.0
50 12.1 1.0 13.9
30 7.3 1.0 7.9

10 6.2 1.0 6.5

932 D 57.4 7.1 0.97 0.59
70 24.8 6.5 36.4
50 14.5 6.4 16.1
30 11.0 6.3 9.3
10 10.0 6.2 7.6
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TABLE IV (Continued)

SILVER-INDIUM REFLECTIVITY DATA

A-A 0 RBm RBk %R n k

1048 D 92.2 11.7 1.04 0.54
70 40.4 11.6 35.8
50 23.9 11.6 15.3
30 18.1 11.6 8.1
10 16.3 11.6 5.8

1216 D 93.4 4.1 1.05 0.50
70 36.1 3.2 36.8
50 16.8 3.2 15.2
30 10.1 3.2 7.7
10 8.2 3.2 5.6

1311 D 66.5 18.0 1.05 0.53
70 34.4 16.0 37.9
50 23.0 15.0 16.5
30 19.2 15.0 8.7

10 18.1 15.0 6.4

1470 D 79.0 30.3 1.07 0.58
70 38.8 18.6 41.5
50 23.3 14.5 18.1
30 17.6 12.6 10.3
10 16.0 12.2 7.8

1671 D 84.7 10.5 0.85 0.64
70 43.8 7.4 49.1
50 25.0 5.7 26.0

30 16.3 5.0 15.2
10 13.1 4.8 11.2
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does not change, we would expect a simple growth in all directions of

the Fermi surface adopted for pure silver. The area of contact at the

hexagonal face would increase and there would be a greater number of

electrons eligible for transitions at all wavelengths. The increased e/a

would raise the Fermi level and, as a result, cause the "d to conduction"

band transitions to appear at shorter waveler,-ths. With this model,

the observed conductivity should be slightly greater at all wavelengths

and the secondary peak at 600A should be retained, though broadened.

With one exception, the experimental data do not confirm any of

these predictions. The exception is the appearance of the broad peak

between 1200 and 1800A which suggests the shift of d-band transitions

to shorter wavelengths, but this could be simply a result of raising Ef.

It appears that the alloy data cannot be explained on the basis

of the rigid band model.

Let us now consider the Cohen-Heine (hereafter referred to as

C-H) hypothesis and its consequences. The C-H Fermi surface would

pull away from the zone face, perhaps to the extreme of losing contact

entirely. Energy gaps at B. Z. boundaries would decrease and the Fermi

surface would approach a spherical shape. These features seem to be

the requirements for explanation of the experimental data. Reduction

or loss of contact at the zone face would indeed require that the 600A

peak either diminish or vanish. Also, a result of sphericizing the Fermi

surface would be a conductivity curve more like the free electron curve

of Figure 9. That the trend is in this direction is demonstrated by a

comparison of the free electron and the alloy data in Figure 20. Ai-

though the alloy curve has assumed some of the character of the free

electron curve, there is sufficient discrepancy to warrant the assump-

tion of a Fermi surface which is still distorted but to a lesser degree

than that for silver.

Utilizing these features of the C-H theory, a Fermi surface was

estimated for the AgIn alloy. In conformity with the alloy e/a of 1. 2,
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hexagonal face would increase and there would be a greater number of
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the volume enclosed by this surface was adjusted to be 20 per cent

greater than the volume used for silver. Only a point contact was re-

tained at the hexagonal zone face as is illustrated in Figure 21. The

E(k) were adjusted for decreased gap using the formula proposed by

C-H:
2 7

() Ap_ e/a Z i (ASp) - C& s.Pe/az solute SP) solvent

This formula gives the average change in the gap size at the zone faces.

The terms in the brackets are obtained from the atomic term values,

several of which are listed in their report, e.g. , Ag: 3. 75 ev, In: 7. 5

ev, Au: 4. 75 ev, and Al: 6. 9 ev. The symbol z in the formula is used

to denote the valence of the solute. Upon substitution of the values for

silver and indium in their formula, an average change of gap of 0.94 ev

was obtained and the E(k) were corrected by this amount.

Using this modified Fermi surface and E(k), a computation of

conductivity for the alloy was performed in the same manner as out-

lined earlier for silver; these results are presented in Figure 22 and

Table V. A comparison of the experimental and calculated curves indi-

cate that this choice of modified Fermi surface is not a bad one, inas-

much as there is quite good agreement in the wavelengths at which the

maxima and minima occur. Small changes in the area of contact of the

Fermi surface have a pronounced effect on the calculated results in the

range of 500 to 700A. Despite the few experimental points available in

this range, one can conclude that the area of contact for the alloy does

not exceed 10 per cent of that for silver.

To make the magnitudes of the computed and measured conduc-

tivities coincide over the range studied requires a value of P---of
5 -2 5 kk

0.6 X 10 cm in contrast with the value of 1. 0 X 10 obtained for

silver. Thus it would appear that an effect of alloying at this

2 7 M. H. Cohen and V. Heine, op. cit.
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TABLE V

DATA USED IN AG-IN COMPUTATION
(EQUATION 66)

X-A A(KX) A(K) A(K) (/PX10 9

XL K ZA(K) uPX1-

309 16.3 16.1 30.7 63. 1 31.8

352 16.7 18.7 14.6 50. 0 28.7

412 16.2 18.0 0 34. 2 23.0

493 12.6 18.0 30. 6 24.6

617 10.6 19.4 30.0 37.5

650 10.8 19.9 30.7 36.7

714 8.1 20.5 28. 6 36.5

825 6.0 18.0 24.0 35.0

1000 3.8 15.7 19.5 31.8

1230 2.5 11.9 14.4 28.9

1400 1.6 9.3 10.9 25.0

1500 1.3 8.0 9.3 22.9

1600 1.0 6.8 7.8 20.2
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concentration is to reduce the transition probability between conduction

and excited band by a factor of almost two. This effect appears to be

primarily due to the decrease of energy gap at the zone faces and can

be qualitatively predicted by the "almost free" electron approach of

Chapter III.

Recalling equations (39) and (45), we write the Bloch function

for the case of a small perturbing potential

(4 ) ckr- =) K r * r

K,
1

k m ik. ri
*-_N =c0 2 2k-Z R-' - K 2 e

Use of this expression to derive Po i-gives the result

2im K V(K) 2

( Pk ,k = f' k g - 22 2i.K+K 2

which shows that P- ,- should go as the square of the Fourier term,
k' ,

V(K, or as I E sp/2 2 . Pi- -can now be written in terms of energy

gaps in the form

(6) P--(AgIn) = P----(Ag) E (AgIn) 2

() kkk L E sp(Ag)j
sp

The average value of E sp(Ag), from Figure 12 is 3.6 ev.; this value was

reduced by the C-H formula to 2.7 ev. for E sp(AgIn). Equation (6)

therefore predicts the transition probability for theAgIn alloy to be less

than that for silver by a factor of 0. 56, in agreement with the computed

factor of 0.60 derived from Figure 22. This close agreement is no doubt

in part fortuitous. If it is assumed that the d-band produces distortions

in E(k) of the conduction band in the alloy also, then the simple ap-

proach used above cannot be expected to apply exactly. But this
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approach does show the general dependence of P -- on Esp and the re--

sults lend further support to the C-H theory for alloys.

To summarize, we can say that the major effects observed as a

result of alloying silver with indium are (1) the transition probability

between conduction and excited bands is reduced by a factor of 0. 6 for

10 at . % In, (2) a Fermi surface having reduced contact at the zone

boundary provides the proper basis for interpretation of the optical data,

and (3) energy gaps at the zone boundaries diminish. These effects

suggest a breakdown of the rigid band concept and support the theory

advanced by Cohen and Heine.

C. Results for Gold

At the present time only a limited amount of theoretical infor-

mation is available for the gold band structure. The work of Segall 2 8

includes a calculation for gold, but in this, he determined the energy at

the symmetry points X,r, and L only. He points out that one should

expect considerably more uncertainty in the potential he has constructed

for gold than in the potential used for copper and silver. Since gold is

a much heavier atom than the other two, the non-relativistic wave

functions and the potential based on them will be less accurate, and,

at present, only Hartree functions are available. Segall's results place

the p-like states at the gaps at X and L lower in energy than the s-like

states, as for silver, but the d-bands fall below even the r 1 state.

The energies below 24 ev. at the symmetry points r, X, and L in

Figure 25 are those obtained by Segall.
Hen 29

The calculations of Cohen and Heine predict a differently

ordered band structure. Although they make no estimate of the relative

positions of the d-bands, their results place the p-like states at X and

28B. Segall, op. cit.

29 M. Cohen and V. Heine, op. cit.
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L higher in energy than the s-like states. In their band model, the

conduction and excited bands overlap near L and the gap at L is only

-0. 75 ev. They also offer the suggestion, ... The optical constants

and electronic heat of gold indicate considerable distortion of the Fermi

surface but little, if any contact. " No further reference is made to the

optical constants used in this conclusion, but they were undoubtedly

not ones obtained in the far ultraviolet.
' 30

Morse et al. recently reported on Fermi surface shapes as

determined by the method of ultrasonic attenuation in a magnetic field.
-19

For gold, they report a radius of contact of 0. 24XI0 g-cm/sec at the

point L, in partial confirmation of Segall's results. Their data for other

directions in k-space are reproduced in Figure 26.

It was with this background of meager and contradictory infor-

mation that the optical properties of gold were studied and efforts were

made to interpret them in terms of band structure.

Representative reflectivity measurements on gold films at four

angles of incidence and over the wavelength range 304 to 1671A are

summarized in Figure 23 and Table VI. Gold conductivity as determined

from n and k is plotted as a function of wavelength in Figure 24.

A conductivity computation was made from a band structure based

on the Fermi surface reported by Morse, the symmetry point energies

calculated by Segall, and an estimated E(k) between these symmetry

points as shown in Figure 25. An Ef was chosen which was compatible

with the Morse shape and volume. The results of this computation are

compared with experimental data in Figure 24 and are reported in Table

VII.

The computed peak at 500A has an origin different from the

similar one observed in silver. Because of the highly distorted Fermi

surface of gold, Figure 26 shows that there is a pronounced increase

30R. W. Morse, A. Myers, C. T. Walker, J. Accoustical Soc.

Am., 33, 699 (1961).
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TABLE VI

GOLD REFLECTIVITY DATA

X-A 0 RBm RBk %R n

304 D 66.0 40.0 0.89 0.23
70 41.0 34.0 26.9
50 32.9 31.3 6.2
30 30.0 29.5 1.9
10 29.0 28.6 1.5

406 D 66.0 41.6 0.91 0.31
70 45.6 38.4 29.5
50 39.9 37.9 8.2
30 38.1 37.3 3.3
10 37.9 37.5 1.6

461 D 87.8 29.5 0.91 0.39
70 46.0 25.6 35.0
50 31.3 24.5 11.6
30 26.5 23.0 6.0
10 26.0 22.5 6.0

584 D 75.5 3.0 0.98 0.67
70 30.5 2.5 38.6
50 15.4 2.0 18.5
30 10.6 2.0 11.7
10 9.6 2.0 10.5

735 D 97.0 6.4 0.93 0.58
70 38.4 4.3 37.6
50 19.2 4.2 16.5

30 13.1 4.0 10.0
10 11.3 4.0 8.0

932 D 71.7 4.5 0.98 0.71
70 32.0 3.1 43.0
50 17.8 3.1 21.7
30 12.3 3.1 13.7
10 10.4 3.1 10.9
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TABLE VI (Continued)

GOLD REFLECTIVITY DATA

X-A 0 RBm RBk %R k

1048 D 92.0 2.0 1.05 0.69
70 40.0 0.9 43.5
50 20.5 0.9 21.8
30 12.8 0.9 13.2
10 10.4 0.9 10.5

1216 D 89.5 1. 2 1.12 0.80
70 42.5 1.0 47.0
50 23.5 1.0 25.4
30 15.0 1.0 15.8
10 12.1 1.0 12.6

1671 D 51.5 6.0 1.04 0.94
70 28.6 4.2 53.6
50 18.0 3.5 31.9
30 12.9 3.1 21.5
10 10.8 2.8 17.6
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TABLE VII

DATA USED FOR GOLD COMPUTATION
(EQUATION 66, FIGURE 23)

X-A A(KX) A(KL) A(KK) Z.A(K) u,/PX

300 19.1 20.5 3.5 43.1 2]

350 17.7 20.5 0 38.2 2]

400 16.2 20.5 36.7 2(

500 12.8 19.6 32.4 3]

600 9.0 15.1 24.1 2(

700 4.9 10.8 15.7 1E

800 2.3 8.6 10.9 ]'

900 1.5 6.8 8.3 1l

1000 1.2 5.7 6.9 1

1100 1.0 4.6 5.6 1[

1200 0.8 3.7 4.5

1300 0.5 3.1 3.6

1400 0.4 2.5 2.9

1500 0.1 2.2 2.3

1600 0 1.7 1.7

1700 1.3 1.3

1800 1.0 1.0
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in the number of electrons available for transitions in the energy range

20 to 30 ev. Thus, part of this peak would appear even if the increased

P--- had not been considered in this region. To shift this peak to 600A
k'k

requires that those discs which touch the zone face near L be associated

with lower energy transitions than presently assumed; a decrease of

about 4 ev. would be satisfactory. The desired change cannot be

effected by simply raising the level of 1T since this would still allow12

the 25 ev. disc to contact the zone face at L. The only change in band

structure which can bring these peaks into coincidence is one which

lowers the energy levels above L1 and X . The dotted E(k) in Figure 25

performs this function while retaining the gaps prescribed by Segall.

In the range of 300 to 800A the magnitudes of computed and

measured conductivity are equal if an average value of P- -of 105 cm- 2

Wk
is assumed. This value is the same as for silver and would indicate

that the transition probability between conduction and excited bands is

the same for both metals in this wavelength range.

Between 800 and 1800A we find a divergence of computed and

measured values; the experimental data suggest the presence of trans-

itions in this range which were not accounted for in the computation.

Figure 25 indicates the possibility of the following transitions from the

d-bands:

X3 toX41 : 15.2 ev, 810A

X5 toX41 : 12.3 ev, 1000A

X5 to Ef : 11.5 ev, 1070A

r to Ef : 7.6 ev, 1620A.

The first three transitions go from d-like to p-like states near the Fermi

level and the last goes from s-like states to the p-like states, thus the

probability should be relatively high for these four possibilities. It

seems not unlikely, therefore, that conductivity in the 800 to 1800A

range is due to transitions of the two types: (1) conduction to excited

band and (2) d and s states to unfilled states near the Fermi level.
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In a discussion of nk curves for the noble metals, Seitz 3 1

argues that the peak in nk observed for silver at 2500A can be attributed

to transitions from conduction to excited bands. He then supposes that

silver and gold have similar valence electron structures and anticipates

a peak in the gold nk curve at the same wavelength and for the same

reason. He thus infers that the peak for gold at 4000A arises from d-

band to Fermi level transitions. In our interpretation which is based on

the Segall, Morse and optical data, the inverse situation is demanded.

Indeed, if our model is extended to longer wavelengths, it predicts the

observed conductivity peak at 3700A and attributes it to transitions in

the L direction which originate from the neck areas near L, for example,

the 3.6 ev. disc in Figure 26.

As a result of these studies one can conclude that the theoretical

calculations of Segall are in accord with the accoustical attenuation

measurements of Morse and with the optical constant data obtained in

the far ultraviolet. Furthermore, the use of the disc model can be of

great value in the interpretation of optical data particularly when the

energies between sets of bands overlap as in gold.

D. Gold-Aluminum Alloys

In the course of measuring reflectivity of AuAl films it was

noticed that at a critical concentration of aluminum, reflectivity at 304A

and near normal incidence increased by a factor of approximately three.

Several films were prepared and studied to determine as closely as

possible the concentration at which this effect occurs. The data in

Table VIII show that the onset of this increase is associated with an

aluminum concentration of between 22. 6 and 24. 6 at . %, or an electron

per atom ratio of about 1. 47.

Reflectivity and conductivity data for films with concentrations

slightly above and below the critical one are given in Figures 27, 28 and

31F. Seitz, op, cit. p. 655.
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TABLE VIII

GOLD REFLECTIVITY AT 304A, p=100, FOR
VARIOUS CONCENTRATIONS OF ALUMINUM

FILM # wt. %Al at. %Al e/a %

Au-3 0 0 1.0 1.5

Au-Al-8 3.4 20.4 1.41 2. 2

Au-A1 -9 3.8 22.6 1.45 2.0

Au-Al-10 4.3 24.6 1.49 6.9

Au-A,1-7 4.9 27.4 1.55 6.1

Au-A1-6 6.6 34.1 1.68 4.9

Au-Al-i1 7.5 37.2 1.75 6.2
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29 and Tables IX and X.

Somewhere in this range of concentrations a phase change

apparently occurs but at the present time, metallurgical information is

not complete enough to clarify the problem. We quote from a publication

as recent as Hansen's, 3 2 (1958): "In spite of quite extensive investi-

gation by thermal and some micrographic analysis as well as X-ray

studies, the composition of some of the intermediate phases and the

phase relations in the range 70-90 at . % Au are still not fully known.

On the basis of X-ray work, (8) asserted that in the neighborhood of

75 at . % Au a phase, not found by others, (1,7), is formed peritectically,

but there is no indication of a peritectic reaction in this range. On the

other hand, the occurrence of Au3 Al (95. 64 wt. %Au) has been reported

on the basis of X-ray studies (3, 13) which revealed the existence of a

phase with the structure 3 -Mn. --- However, it was shown that a phase

of the composition Au3 Al does not exist, (9), and that the phase with

the structure of 3 -Mn has the composition of Au4 Al rather than Au3 Al

(7,9). Also, (1) and (8) have claimed the compound Au4Al to exist. Its

structure was found to be similar to, but not completely identical with

that of 03-Mn (8,9). " (The references in parentheses are Hansen's.)

Since the concentration at which this large change in reflectivity

and conductivity occurs, (4.3 wt. %), is very near that of Au 3 Al, (4.36

wt. %), it is possible that our data are evidence for the existence of this

phase.

The A -Mn structure has 20 atoms per unit cell, but it is of the

cubic system and could possibly possess a Brillouin zone similar to the

face-centered cubic system of gold. If such were the case, we would

have an explanation for the similarity of conductivity curves for Au and

the Au-Al alloys. This point must be left open for future study, how-

ever, since the space group of the a-Mn structure is also not fully known.

3 2 M. Hansen, op. cit.
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TABLE IX

GOLD-ALUMINUM REFLECTIVITY DATA
(Au-A-8, 3.38 wt % AI)

X-A 0 RBm RBk %R n k

304 D 49.5 27.0 0.83 0.27
70 30."3 22.4 35.1
50 22.4 20.5 8.5
30 21.0 20.0 4.5
10 20.5 20.0 2.2

461 D 90.7 31.0 0.81 0.41
70 48.8 23.8 41.9
50 32.0 22.6 15.7
30 26.8 22.0 8.0
10 25.0 21.6 5.7

584 D 50.5 3.8 0.90 0.63
70 22.6 3.5 40.9
50 12.3 3.5 18.9
30 9.1 3.5 12.0
10 8.4 3.5 10.5

735 D 93.5 5.4 0.99 0.69
70 37.6 4.2 37.8
50 20.0 3.6 18.7

30 14.2 3.4 12.2
10 13.0 3.4 10.9

932 D 91.2 14.8 1.01 0.68
70 45.0 13.1 41.8

50 29.0 13.1 20.8
30 22.8 13.1 12.7
10 20.8 13.1 10.2

1048 D 58.2 2.0 1.04 0.67
70 25.8 1.7 42.9
50 13.6 1.7 21.2
30 8.8 1.7 12.6
10 7.1 1.7 9.6
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TABLE IX (Continued)

GOLD-ALUMINUM REFLECTIVITY DATA
(Au-A1-8, 3.38 wt % Al)

X-A 0 RBm RBk %R n k

1216 D 71.5 6.2 1.24 0.79
70 35.5 5.5 45.9
50 21.6 5.5 24.6
30 15.7 5.5 15.6
10 13.6 5.5 12.4

1671 D 47.4 6.2 1.02 0.91
70 26.8 4.9 53.2
50 17.2 4.2 31.6
30 12.5 3.9 20.9

10 10.8 3.6 17.5
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TABLE X

GOLD-ALUMINUM REFLECTIVITY DATA
(Au-AI-10, 4.3 wt % Al)

X-A 0 RBm RBk %R n k

304 D 72.0 56.1 0.94 0.53

70 46.4 41.2 32.7
50 40.9 39.0 12.0
30 39.0 37.7 8.2
10 38.5 37.4 6.9

406 D 66.2 43.3 0.85 0.20
70 45.8 38.0 34.1

50 38.5 36.8 7.4
30 36.5 36.0 2.2
10 36.1 35.9 0.9

461 D 89.8 32.0 0.83 0.35
70 45.7 24.0 37.5
50 30.5 23.0 12.9

30 25.2 22.2 5.2
10 24.5 21.7 4.8

584 D 74.2 3.9 0.92 0.58
70 29.5 2.5 38.4
50 14.2 1.8 17.3

30 9.0 1.8 10.2
10 7.8 1.8 8.5

735 D 80.6 3.6 0.93 0.59

70 30.9 2.5 36.8
50 15.0 2.1 16.8
30 9.6 2.0 9.9
10 8.0 1.8 8.0
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TABLE X (Continued)

GOLD-ALUMINUM REFLECTIVITY DATA
(Au-Al-10, 4.3 wt % Al)

X-A 0 RBm RBk %R n k

932 D 79.5 19.6 1.00 0.64

70 41.2 17.1 40.2
50 27.8 16.6 18.7
30 23.0 16.3 11.2
10 21.0 16.2 8.0

1048 D 94.0 4.8 1.03 0.66
70 40.8 3.2 42.3
50 21.9 3.2 21.0

30 14.1 3.2 12.2
10 11.6 3.2 9.4

1216 D 61.7 8.6 1.05 0.69
70 31.2 7.1 45.4
50 19.6 6.9 23.9
30 14.5 6.8 14.5
10 12.9 6.7 10.7

1671 D 85.3 12.3 1.14 0.92
70 44.5 7.5 50.5
50 27.5 5.6 30.0
30 19.4 4.9 19.9
10 16.4 4.6 16.2
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E. Results for Aluminum

The band structure of aluminum has received considerable

attention and is now fairly well understood. Heine 3 3 has calculated the

energy gaps at zone faces using the orthogonalized-plane-wave method,

(OPW), and Harrison 3 4 has shown the effectiveness of a single OPW

approximation. Since the gaps at the boundary of the first B. Z. are

much smaller than the Fermi level energy, the method of Harrison

amounts to the "nearly free electron" approximation. The calculations

of Segall35 produce a band structure not unlike Harrison's. All these

calculations point to the fact that the free electron E(k) prevails at all

places in the zone with the one exception of points very near the zone

faces, and in these areas, the distortion of the free electron E(k) is not

great.

A model, (Figures 30 and 31), has been constructed which

displays those states in the first B. Z. from which optical transitions to

the second zone can originate. The presence of occupied states in the

second zone negates transitions from a considerable volume of the first

zone. Since transitions from occupied states of the second zone to

states in the third zone occur at energies greater than those of our

immediate interest, they will not be considered here. The same remark

applies to those states which are negated in zone one to zone two trans-

itions.

Following methods outlined earlier, a conductivity computation

was made 'With the use of this model. The results as shown in Figure 32

is a curve whose character is radically different from that obtained for

3 3 V. Heine, Proc. Roy. Soc. London, A240, 361, (1957).

3 4W. A. Harrison, Phys. Rev. , 118, 1182, (1960).

35B. Segall, op. cit.
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TABLE XI

DATA USED IN ALUMINUM COMPUTATION
(EQUATION 66)

A(KX) A(KL) A(KK) JA(K) a/P X 10- 9

300 14.6 13.9 15.0 43.5 21.8

410 12.5 13.1 8.5 31.6 21.2

490 10.7 13.1 0.0 29.8 24.0

615 10.7 15.8 26.5 26.8

820 8.0 13.1 21.1 28.2

990 7.0 10.8 17.8 28.7

1230 6.0 10.0 16.0 32.1

1450 5.5 2.9 8.4 19.9

1760 5.1 0.0 5.1 14.7
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silver and gold. The onset of conductivity attributable to interband

transitions appears at approximately 2000A and there is no extension

into the visible region.

It is difficult to appraise these calculations on the basis of ex-

perimental data. The difficulties associated with reflectivity measure-
36,37

ments in the far ultraviolet are many 3 and the few results reported

are not in harmony. The chief problem encountered in these measure-

ments in the inclusion of oxygen atoms in the film during the process of

evaporation and the rapid rate of surface oxidation of the film after

evaporation of the aluminum. Results of the second effect are illustrated

in Figure 33 where we see the rapid increase of the optical constants as

the film ages in a vacuum chamber. An interesting aspect of these data

is that although both n and k, and thus conductivity, increases with

time, reflectivity decreases; these conditions are analogous to the ex-

ample cited in Chapter II-A.

Included for comparison in Figure 32 are data obtained by LaVille
38 39and Mendlowitz and by Madden. If we use Madden's data as3 -2

reference, a value for P-- of 2. 5X103 cm is obtained, indeed a value

much smaller than the 10 which resulted for silver and gold. If we

apply Equation (6) in the form

(7) E (Al) = E (Ag) kink
sp sp Ag

k' k

and use the average value of 3. 7 ev. for E sp(Ag), we obtain an average

E sp(Al) of 0. 58 ev, which is in favorable comparison with 0. 66 ev. as

3 6 G. Hass, W. R. Hunter, and R. Tousey, J.O. S.A., 47, 1070,

(1957).
3 7 G. Hass, and J. E. Waylonis, J.O.S.A. , 51, 719, (1961).
3 8 R. LaVille and H. Mendlowitz, Phys. Rev. Lttrs. , 9, 149,

(1962).
3 9 R. P. Madden, Private Communication.



95

0D

0

o< E

0 Z

00

uII

I-4

0~l 0
0n r') N _ rJ

(00:

0 0 0 0 0 UEE
q* (n

-4 (1)
ANU 4 s.

It) 0 If) o
:5 a)

01 X tIT



96

calculated by Heine. Thus, it again appears that gap size is a major

factor in the determination of interband transition probability.

F. Possible Future Work

Since so few metals have been studied in the far ultraviolet,

future research in this area may proceed in several directions. It would

be fruitful to measure the optical constants of other metals for which

band structure calculations have been made and to continue the conduc-

tivity correlations made thus far. Improvement and refinement of ex-

perimental technique and equipment such that data could be obtained at

many more wavelengths in the far ultraviolet would permit finer resolu-

tion of conductivity and band structure. Optical data can be a powerful

tool when applied in this direction.

A continuation of the study of alloys is recommended. Many

questions concerning the nature of metallic phase changes remain, but

the use of optical properties and band structure analysis can provide

further understanding of these problems. Since it appears that one effect

of alloying is to modify the band structure, more information regarding

this effect could lead to effective methods of varying and controlling

reflectivity in the far ultraviolet. Applied to the design of optical in-

struments, such results would be of immediate importance.



CHAPTER V

EXPERIMENTAL APPARATUS AND METHODS

A. Monochromator and Reflectometer

The ultraviolet monochromator used in this work was constructed

by Ball Brothers Research Corporation of Boulder, Colorado. The light

source is a glow discharge between a hollow aluminum cathode and a

copper slit anode, and the output consists of lines characteristic of the

source gas used. Helium, neon, argon and hydrogen were used for the

spectral lines reported. Mechanical details and photographs of this

equipment are included in the thesis by Cole. 40

Early in the course of these experiments it was discovered that a

film of oil was being deposited on the diffraction grating and causing a

reduction of output intensity and resolution. To reduce this problem the

baffle immediately above the monochromator diffusion pump was fitted

with a water jacket for cooling. This modification greatly reduced the

grating problem but did not solve it completely.

Several modifications were made in the reflectometer and in its

use. A large, semi-circular 35 mm film holder and its associated motor

drive mechanism was removed from the reflectometer chamber in an effort

to achieve lower pressures in the chamber. The automatic drive mechan-

ism which had been used to move both the film under study and the de-

tector in unison was disconnected and not used. It was felt that since

data were needed at only four angles of incidence, greater precision

would be obtained if the film and detector were positioned manually. In

this manner, the metallic film was brought to the desired angle of

4 0 T. T. Cole, Thesis, University of Colorado, 1961.
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incidence, then the detector was adjusted to obtain a maximum indi-

cation of reflected light. Readings were taken at 700, 500 , 30' and 10'

and then repeated in the opposite order. An average was taken of the

two sets of readings but if any two readings at the same angle differed

by more than four per cent, the entire series was repeated.

The detector consisted of a nine stage photo-multiplier tube

mounted on a movable, radial arm and its distance from the mirror was

constant at all angles of reflection. The outer surface of the phototube

envelope was coated with a solution of sodium salicilate in alcohol.

After evaporation of the alcohol, a thin film of the phosphor remained on

the envelope and converted the high energy u. v. photons to lower

energy ones which could penetrate the glass envelope and reach the

photocathode.

Other than the relocation of electrical ground points to reduce

the noise level, no changes were made in the signal amplifier and

recorder.

The physical geometry of the incident beam and detector assembly

were such that a constant area, 25 mm by 6 mm, of the mirror was

sampled for all the data reported.

B. Thin Film Production

Holland 4 1 discusses in considerable detail the effect of the

rate of deposition on film homogeniety. He includes micro-photographs

to show that a slowly deposited silver film, for instance, does not have

a fully connected structure. At a deposition rate of 25A per minute a

silver film displays discontinuities and fissures on its surface and these

are separated by approximately 0. 1 microns. However, for deposition

rates of 100A per second, very few of these discontinuities appear and a

more uniform surface results. In all cases, photographs and x-ray

4 1 L. Holland, Vacuum Deposition of Thin Films, John Wiley and
Sons, New York, 1950.
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studies indicate that thin films made by evaporation techniques consist

of an aggregate of microcrystals, randomly oriented. Thus, even a

beam of plane polarized radiation incident upon such a surface meets

crystal structure with a random assortment of angles.

To meet the requirements of deposition rate suggested by Holland,

a high speed evaporation system, which approached "flash" evaporation,

was devised. The heat source consisted of braided 15 mil, tungsten

wires or a small molybdenum boat through which a large electrical

current was passed. The sources were supplied by a 5 volt, 110 ampere

transformer whose primary was excited by a Variac. Temperatures on

the order of 2500'C could be achieved with this apparatus, and deposi-

tion rates of 1000A per second.

Gold, aluminum, and the gold-aluminum alloys were evaporated

from the tungsten filaments since both these metals wet tungsten when

in their melted state. Silver, however, forms a contact angle greater

than 90* with tungsten and must be evaporated from a container such as

the molybdenum boats. Purity of all metals used exceeded 99. 95%.

Normal procedure in all evaporations was to slowly increase

heater temperature until the melting point of the metal or both compon-

ents of the alloy was reached; sputtering of the evaporant was avoided

by this precaution. After the metals were completely melted, full power

was applied to the heater and maintained until all the evaporant had left

the heater. An opaque film at least 2000A thick could be produced in

two seconds with this technique. Film thickness was determined from a

measure of the weight of evaporant placed in the heater and relative

distances between heater and film.

The data presented by Holland show that at these high rates of

evaporation, both phases of the Au-Al and Ag-In alloys leave the heater

at approximately the same rate and produce a homogeneous film. To be

assured of this feature, reflectivity measurements were made immedi-

ately after evaporation of the alloys, the films were then annealed
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in situ at approximately 4000 C for three hours, and reflectivity meas-

urements were repeated. Deviations between measurements before and

after annealing did not exceed the normal experimental error of meas-

urement, and it was assumed that homogeneous films had been attained.

All the data reported here were taken immediately after evapor-

ation in situ, and evaporations were conducted at chamber pressures

between 8X10 - 6 and 10-5 mm Hg.

C. Data Reduction and Analysis

Determination of n and k from the reflectivity data was made

with the use of the charts prepared by Cole and based on the graphical
42

method suggested by Tousey. (This method is discussed in Chapter

I.) The degree of polarization of the incident beam at various wave-

lengths was in agreement with that encountered by Cole.

A reflectivity measurement in situ was found to be reproducible

to within ± 2% for intense source lines and ± 3% for the weaker lines.

Comparison between measurements of two different films of the same

material and at the same wavelength indicate an element of error of the

same order of magnitude.

To investigate the effect of errors in reflectivity on the nk prod-

uct and conductivity, the reflectivity data for silver at 1671A were

adjusted by ± 5% and a family of n-k curves was obtained for both

adjustments as shown in Figure 34. It is seen that the effect of intro-

ducing such an error in the reflectivity data is to greatly increase the

spread of intersections of these curves. The average nk product was

also changed as shown and the errors introduced in conductivity were

- 6. 9% and + 3. 5% for the + 5% and the - 5% changes in reflectivity

respectively. Had an error been made in reflectivity at only one angle

of incidence, three of the n-k curves would still have intersected at a

42 R. Tousey, op. cit.
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near common point as in Figure 34-a. It is apparent that such errors in

reflectivity lead to multiple solutions of the Fresnel equations for n and

k.

To minimize such errors, reflectivity data had to meet the

following criterion to be considered valid for calculation of conduct-

ivity. The nk product was determined for each of the six pos.8sible

intersections of the four n-k curves. These products were averaged

arithmetically and the deviation of each product from the average was

calculated. If the deviation for any one intersection exceeded 5% of

the mean, these reflectivity measurements were discarded. With these

restrictions and with the reproducibility of measurements given earlier,

the error in conductivity at any wavelength does not exceed 5% of the

reported value. It should be noted that of approximately one hundred nk

products determined in this manner, only six had to be rejected as

possibly invalid.

4
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